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Abstract. We consider the three-dimensional elastic wave equation for an isotropic heteroge-
neous material subject to a stress-free boundary condition. Building on our recently developed theory
for difference methods for second order hyperbolic systems [H.-O. Kreiss, N. A. Petersson, J. Yström,
SIAM J. Numer. Anal., 40 (2002), pp. 1940–1967], we develop an explicit, second order accurate
technique which is stable for all ratios of longitudinal over transverse phase velocities. The spatial
discretization is self-adjoint, and the stability is obtained through an energy estimate. Seismic events
are often modeled using singular source terms, and we devise a technique to place sources indepen-
dently of the grid while retaining second order accuracy away from the source. Several numerical
examples are given.
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1. Introduction. As a model for seismic wave propagation, we consider the
elastic wave equation for an isotropic heterogeneous material in a three-dimensional
domain Ω:

ρ
∂2u

∂t2
= ∇ · T + f , x ∈ Ω, t ≥ 0,(1)

T = λ(∇ · u)I + μ
(
∇u + ∇uT

)
,

subject to initial data

u(x, 0) = U0(x), ut(x, 0) = U1(x), x ∈ Ω.

Here T is the stress tensor, u = u(x, t) is the displacement vector with Cartesian
components u = (u, v, w)T , where x = (x, y, z)T is the location, and t is time. f is
the external (volume) forcing, and the material properties are characterized by the
density ρ(x) > 0 and the Lamé parameters λ(x) > 0 and μ(x) ≥ 0. The degenerate
case μ = 0 corresponds to acoustic wave propagation and will not be discussed here.
We henceforth assume μ(x) > 0.

Common boundary conditions include a Dirichlet condition for u or a normal
stress condition

(2) T · n̂ = λ(∇ · u)n̂ + μ(∇u + ∇uT ) · n̂ = g,
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DIFFERENCE METHOD FOR THE ELASTIC WAVE EQUATION 1903

which prescribes the stresses on a boundary with unit normal n̂. When g = 0,
this boundary condition is often called a free surface or stress-free condition. The
system (1) admits longitudinal (P , or primary) and transverse (S, or secondary)
waves which propagate at phase velocities

cp =
√

(2μ + λ)/ρ and cs =
√
μ/ρ,

respectively. There can also be surface waves, which travel along a free surface, as
well as waves which travel along internal material discontinuities.

Finite difference approximations of the elastodynamic equations in second order
formulation have been around for a long time [2, 3]. Early methods, based on explicit
centered difference approximations, were initially very successful but suffered from
instability problems when a free surface boundary condition was imposed, and the
ratio between the P - and S-wave velocities

ν =
cp
cs

became too large [13] (note that ν >
√

2). Ilan [14] proposed a remedy which applied
only to materials with constant properties normal to the boundary, and an implicit
boundary update technique was suggested by Vidale and Clayton [25]. However,
no generally applicable, stable, explicit discretization was found for the second or-
der formulation which worked for high values of ν. Due to the instability problems,
alternative formulations were explored where the elastic wave equation was rewrit-
ten as a larger first order system for the three velocity and six stress components
and discretized on a staggered grid [21]. Most current finite difference methods for
seismic wave propagation are based on the staggered grid technique. It is, however,
difficult to handle complex geometry (e.g., topography) with these staggered grid
methods, so there has been recent interest in more expensive methods based on un-
structured meshes, such as the spectral element technique described by Komatitsch
and Tromp [15].

In this paper we revisit the problem of devising an explicit finite difference method
for the elastic wave equation in second order formulation, subject to a free surface
boundary condition. Building on our recently developed theory for difference meth-
ods for second order hyperbolic systems [18], we develop a technique which is stable
for all ratios cp/cs. We focus on the long-wave approximation where topography is
neglected, and the stress-free boundary condition is enforced on a flat surface which
is aligned with a grid surface. However, our longer term goal is to extend the embed-
ded boundary technique [19, 17, 16] to the elastic wave equation for handling general
domains. In seismic applications, the material parameters ρ, μ, and λ often vary on
a length scale which is significantly smaller than the wavelength of the elastic waves.
Hence the material parameters can vary rapidly on the computational grid, and to
guarantee stability it is desirable to develop a numerical method which satisfies an
energy estimate. For a hyperbolic system in second order formulation, the key to an
energy estimate is a spatial discretization which is self-adjoint, i.e., corresponds to a
symmetric or symmetrizable matrix. In this paper, we present a discretization which
makes the spatial approximation second order accurate, self-adjoint, and explicit. The
self-adjoint property also implies that the method is conservative.

In section 1.1 we introduce the basic ideas behind our spatial discretization by
studying the scalar wave equation with a cross term in two space dimensions. The
discretization technique is generalized to the elastic wave equation in section 2, where
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we present a theory proving that the method is second order accurate and stable for
all values of cp/cs. The stability and accuracy of the new method are also illustrated
with computational experiments. Seismic events (for example, earthquakes) are often
modeled using singular source terms applied at points, along lines, or over surfaces
in the three-dimensional domain. In section 3 we devise a technique to place sources
independently of the grid while retaining second order accuracy away from the source.
We also study how the temporal smoothness of a point source affects the spatial
smoothness of the solution. In section 4 we first study how the phase velocity of
surface waves depends on the number of grid points per wavelength. Thereafter,
we solve a benchmark problem for a simplified earthquake where the sources are
distributed along a plane. Some comments on our implementation of nonreflecting
boundary conditions for truncating unbounded domains are also given.

1.1. A model problem. We introduce our discretization technique on the half-
plane problem for the scalar wave equation with a cross term in two dimensions:

∂2u

∂t2
= ∇ · F, x ≥ 0, 0 ≤ y ≤ 2π, t ≥ 0,(3)

F =

(
ux + αuy

uy + αux

)
,

with 2π-periodic solutions in the y-direction, subject to the boundary condition

(4) F · n̂ = ux + αuy = 0, x = 0, 0 ≤ y ≤ 2π, t ≥ 0, when n̂ = (1, 0)T .

Here α is a real constant. Similar to the elastic wave equation, the problem
(3)–(4) conserves an energy:

‖ut‖2 + ‖ux‖2 + ‖uy‖2 + 2α(ux, uy) = const,

where (u, v) is the L2 scalar product and ‖u‖2 = (u, u). We have

‖ux‖2 + ‖uy‖2 + 2α(ux, uy) ≥ (1 − |α|)
(
‖ux‖2 + ‖uy‖2

)
> 0, |α| < 1.

Hence the conserved quantity is a norm, and the problem (3)–(4) is well-posed, when
|α| < 1. Conversely, it can be shown that the problem becomes ill-posed for |α| > 1.

We introduce a grid with points xi = (i − 1)h, yj = (j − 1)h, i = 0, 1, 2, . . . ,
j = 1, 2, . . . , Ny, where h = 2π/(Ny−1) is the grid size. We denote a two-dimensional
grid function by ui,j(t) = u(xi, yj , t). The time dependence will be suppressed when
the meaning is obvious. We use the usual definitions of divided difference operators

Dx
+vi,j =

1

h
(vi+1,j − vi,j), Dx

−vi,j = Dx
+vi−1,j , Dx

0 =
1

2

(
Dx

+ + Dx
−
)

and corresponding expressions in the y-direction.
A second order accurate centered spatial discretization of (3) is given by

(5)
d2ui,j

dt2
=
(
Dx

−D
x
+ + Dy

−D
y
+ + 2αDx

0D
y
0

)
ui,j , i ≥ 1, 1 ≤ j ≤ Ny − 1.
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There are several ways to discretize the boundary condition (4) to second order accu-
racy. As we shall see, a good choice is

(6) Dx
0u1,j + αDy

0

(
u2,j + u0,j

2

)
= 0, 1 ≤ j ≤ Ny − 1.

After Fourier transforming in the y-direction (with dual variable ω), using the bound-
ary condition (6) to eliminate the ghost point values at i = 0, and introducing the
vector notation û = (û1, û2, . . . )

T , we can write the Fourier-transformed semidiscrete
problem in matrix form

(7) h2 d
2û

dt2
= (A + B)û,

where

A =

⎛⎜⎝ −
(
2 + 4 sin2 ωh

2

)
2

1 −
(
2 + 4 sin2 ωh

2

)
1

. . .
. . .

. . .

⎞⎟⎠ ,

B = ıα sin(ωh)

⎛⎜⎝ 0 2
−1 0 1

. . .
. . .

. . .

⎞⎟⎠ ,

and ı =
√
−1. We can symmetrize (7) by the diagonal scaling

S =

⎛⎜⎝ 1/
√

2 0
0 1 0

. . .
. . .

. . .

⎞⎟⎠ , ŵ = Sû,

h2 d
2ŵ

dt2
= (Ã + B̃)ŵ, Ã + B̃ = S(A + B)S−1,

where Ã + B̃ is self-adjoint. As we shall see in section 2, the semidiscrete problem is
stable if Ã+ B̃ also is negative definite. Furthermore, when Ã+ B̃ is self-adjoint, it is
straightforward to discretize time such that the fully discrete problem becomes stable
and conserves a discrete energy which is a second order accurate approximation of
the conserved energy in the continuous case.

Note that it is not necessary to solve a linear system to update the ghost points.
Instead of (6), we can change the boundary condition to be

(8) Dx
0u1j + αDy

0u1j = 0, 1 ≤ j ≤ Ny − 1,

if we also modify the difference approximation on the boundary by taking the cross
term one-sided in the direction normal to the boundary

(9)
d2u1,j

dt2
=
(
Dx

−D
x
+ + Dy

−D
y
+ + 2αDx

+D
y
0

)
u1,j , 1 ≤ j ≤ Ny − 1.

After Fourier transforming (9) in the y-direction and eliminating the ghost point by
use of (8), we obtain the same matrix representation as before, showing that the two
formulations are equivalent.
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2. The elastic wave equation. In Cartesian component form, the system (1)
is

ρutt =
∂

∂x
((2μ + λ)ux + λvy + λwz) +

∂

∂y
(μvx + μuy) +

∂

∂z
(μuz + μwx) + f (x),

(10)

ρvtt =
∂

∂x
(μvx + μuy) +

∂

∂y
((2μ + λ)vy + λux + λwz) +

∂

∂z
(μvz + μwy) + f (y),

(11)

ρwtt =
∂

∂x
(μuz + μwx) +

∂

∂y
(μvz + μwy) +

∂

∂z
((2μ + λ)wz + λux + λvy) + f (z).

(12)

In this paper, we consider box-shaped domains 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c
and impose a normal stress boundary condition at z = 0. In component form, the
boundary condition (2) is

μuz + μwx = g(x),(13)

μvz + μwy = g(y), z = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b, t ≥ 0,(14)

(2μ + λ)wz + λux + λvy = g(z).(15)

For the purpose of discussing the stability properties of our method, we impose ho-
mogeneous Dirichlet conditions at z = c

(16) u(x, y, c, t) = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b, t ≥ 0,

and periodic boundary conditions in the x- and y-directions. Note that the stability
results can be extended to the case of Dirichlet conditions in the x- and y-directions.

To simplify our notation, we assume zero volume and boundary forcings (f = 0
and g = 0) throughout sections 2.1–2.3.

2.1. Spatial discretization. The conclusion from the model problem in sec-
tion 1.1 is that a stable second order accurate discretization of (3)–(4) can be obtained
by discretizing the differential equation with centered differences, except for the cross
terms on the boundary, which should be taken one-sided in the direction normal to
the boundary. The resulting approximation will be second order accurate, and the
ghost points can be updated explicitly if the tangential derivatives in the boundary
conditions are discretized by centered differences along the boundary. We shall use
these principles to define the difference scheme for the three-dimensional elastic wave
equation and proceed by verifying that the resulting approximation is stable and sec-
ond order accurate. The underlying ideas are the same as for the model problem,
even though the algebra gets more complicated.

We define a three-dimensional grid with points xi = (i − 1)h, yj = (j − 1)h,
zk = (k − 1)h, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ Nz, where h > 0 is the grid size,
xNx = a, yNy = b, and zNz = c. Time is discretized with step size δt > 0 on a grid
tn = nδt, n = 0, 1, . . . , and we denote a grid function by un

i,j,k = u(xi, yj , zk, tn). The
superscript for time will be supressed when the meaning is obvious. Apart from the
difference operators already defined, we also introduce

D̃z
0vi,j,k =

{
Dz

+vi,j,1, k = 1,
Dz

0vi,j,k, k ≥ 2,
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and the averaging operators

Ex
1/2(γi,j,k) = γi+1/2,j,k :=

γi+1,j,k + γi,j,k
2

,

Ey
1/2(γi,j,k) = γi,j+1/2,k :=

γi,j+1,k + γi,j,k
2

,

Ez
1/2(γi,j,k) = γi,j,k+1/2 :=

γi,j,k+1 + γi,j,k
2

.

We form the spatially discrete equations at the grid points 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤
Ny − 1, 1 ≤ k ≤ Nz − 1,

ρ
d2u

dt2
=Dx

−

(
Ex

1/2(2μ + λ)Dx
+u

)
+ Dy

−

(
Ey

1/2(μ)Dy
+u

)
+ Dz

−

(
Ez

1/2(μ)Dz
+u

)
+ Dx

0

(
λDy

0v + λD̃z
0w

)
+ Dy

0 (μDx
0v) + D̃z

0 (μDx
0w) =: L(u)(u, v, w),(17)

ρ
d2v

dt2
=Dx

−

(
Ex

1/2(μ)Dx
+v

)
+ Dy

−

(
Ey

1/2(2μ + λ)Dy
+v

)
+ Dz

−

(
Ez

1/2(μ)Dz
+v

)
+ Dx

0 (μDy
0u) + Dy

0

(
λDx

0u + λD̃z
0w

)
+ D̃z

0 (μDy
0w) =: L(v)(u, v, w),(18)

ρ
d2w

dt2
=Dx

−

(
Ex

1/2(μ)Dx
+w

)
+ Dy

−

(
Ey

1/2(μ)Dy
+w

)
+ Dz

−

(
Ez

1/2(2μ + λ)Dz
+w

)
+ Dx

0

(
μD̃z

0u
)

+ Dy
0

(
μD̃z

0v
)

+ D̃z
0 (λDx

0u + λDy
0v) =: L(w)(u, v, w),(19)

where grid point indices have been suppressed to improve readability. The free surface
boundary conditions (13)–(15) are discretized by

1

2

(
μi,j,3/2D

z
+ui,j,1 + μi,j,1/2D

z
+ui,j,0

)
+ μi,j,1D

x
0wi,j,1 = 0,(20)

1

2

(
μi,j,3/2D

z
+vi,j,1 + μi,j,1/2D

z
+vi,j,0

)
+ μi,j,1D

y
0wi,j,1 = 0,(21)

1

2

(
(2μ + λ)i,j,3/2D

z
+wi,j,1 + (2μ + λ)i,j,1/2D

z
+wi,j,0

)
+ λi,j,1 (Dx

0ui,j,1 + Dy
0vi,j,1) = 0

(22)

for 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1. The Dirichlet boundary condition (16) is
discretized by

(23) ui,j,Nz = 0, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny.

The discrete counterparts of the periodic boundary conditions are

uNx,j,k = u1,j,k, u0,j,k = uNx−1,j,k,(24)

ui,Ny,k = ui,1,k, ui,0,k = ui,Ny−1,k(25)

for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz.
In (17)–(19), z-derivatives in the cross terms are made one-sided at the grid

line k = 1. Nevertheless, the semidiscrete approximation is a second order accurate
approximation as demonstrated in the following theorem.

Theorem 1. The semidiscrete scheme (17)–(19) subject to the boundary condi-
tions (20)–(25) is a second order accurate approximation of the continuous equation
(10)–(12) subject to the boundary conditions (13)–(16).

Proof. See Appendix A.
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We will show that the above scheme satisfies an energy estimate. The energy
estimate relies on the spatial discretization being self-adjoint and negative definite
(elliptic). These properties are stated in three lemmas below. The main stability
estimate is stated after the lemmas.

The diagonal scaling S which was used to symmetrize the spatial discretization
for the model problem in section 1.1 is related to a weighted scalar product for the
unscaled problem. For the three-dimensional elastic wave equation, the appropriate
scalar product and norm are

(w, v)h = h2
Nx−1∑
i=1

Ny−1∑
j=1

(
h

2
wi,j,1vi,j,1 + h

Nz−1∑
k=2

wi,j,kvi,j,k

)
, ‖v‖2

h = (v, v)h.

The self-adjoint property is expressed in the following lemma.
Lemma 1. For all real-valued grid functions (u0, v0, w0), (u1, v1, w1) which satisfy

the discrete boundary conditions (20)–(25), the spatial operator (L(u), L(v), L(w)) is
self-adjoint; i.e.,

(26)
(
u0, L(u)(u1, v1, w1)

)
h

+
(
v0, L(v)(u1, v1, w1)

)
h

+
(
w0, L(w)(u1, v1, w1)

)
h

=
(
u1, L(u)(u0, v0, w0)

)
h

+
(
v1, L(v)(u0, v0, w0)

)
h

+
(
w1, L(w)(u0, v0, w0)

)
h
.

Proof. See Appendix B.
From the self-adjoint property it follows that there exists a conserved quantity.
Lemma 2. All real-valued solutions (u, v, w) of the semidiscrete scheme (17)–(19)

subject to the boundary conditions (20)–(25) satisfy

(27)

‖ρ1/2ut‖2
h + ‖ρ1/2vt‖2

h + ‖ρ1/2wt‖2
h − (u, L(u)(u, v, w))h − (v, L(v)(u, v, w))h

−(w,L(w)(u, v, w))h = C,

where C is a constant which depends on the initial data.
Proof. Lemma 1 gives

1

2

d

dt

(
‖ρ1/2ut‖2

h + ‖ρ1/2vt‖2
h + ‖ρ1/2wt‖2

h

)
= (ut, L

(u)(u, v, w))h + (vt, L
(v)(u, v, w))h + (wt, L

(w)(u, v, w))h

=
1

2

(
(ut, L

(u)(u, v, w))h + (vt, L
(v)(u, v, w))h + (wt, L

(w)(u, v, w))h

)
+

1

2

(
(u, L(u)(ut, vt, wt))h + (v, L(v)(ut, vt, wt))h + (w,L(w)(ut, vt, wt))h

)
=

1

2

d

dt

(
(u, L(u)(u, v, w))h + (v, L(v)(u, v, w))h + (w,L(w)(u, v, w))h

)
.

Integrating the above relation in time starting at t = 0 gives (27) and shows that the
constant C depends on the initial data.

To prove that the semidiscrete scheme is stable, we need to show that the con-
served quantity in (27) is a norm; i.e., we need to show that the spatial operator is
negative definite. In particular, we need to show that the sum of the mixed terms
in (u, L(u))h, (v, L(v))h, and (w,L(w))h (such as

(
Dx

0w, μD̃
z
0u
)
h
) is dominated by the

sum of the strictly positive terms (such as
(
Dx

+w,E
x
1/2(μ)Dx

+w
)
h
). This is straight-

forward in the corresponding continuous case and leads to the well-known formula for
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the elastic energy. What makes the discrete case more challenging is that all deriva-
tives in the strictly positive terms are discretized by operators such as Dx

+D
x
−, while

they are discretized by centered differences (such as Dx
0D

y
0) in all mixed terms. We

have the following.
Lemma 3. For all real-valued grid functions (u, v, w) which satisfy the boundary

conditions (20)–(25), we have

(28)

(u, L(u)(u, v, w))h+(v, L(v)(u, v, w))h+(w,L(w)(u, v, w))h = −2‖(Ex
1/2(μ))1/2Dx

+u‖2
h

− 2‖(Ey
1/2(μ))1/2Dy

+v‖2
h − 2‖(Ez

1/2(μ))1/2Dz
+w‖2

h − ‖λ1/2(Dx
0u + Dy

0v + D̃z
0w)‖2

h

−‖μ1/2(Dx
0u+Dy

0v)‖2
h−‖μ1/2(D̃z

0v+Dy
0w)‖2

h−‖μ1/2(D̃z
0u+Dx

0w)‖2
h−

h2

4
R−B.

The operator
(
L(u), L(v), L(w)

)
is negative definite when μ > 0 and λ > 0. It is

semidefinite when μ = 0 and λ > 0. The remainder term R and the boundary term
B are both positive. They are given by

(29) R = ‖λ1/2Dx
+D

x
−u‖2

h + ‖μ1/2Dy
+D

y
−u‖2

h + ‖μ1/2Dz
+D

z
−u‖2

hr

+ ‖μ1/2Dx
+D

x
−v‖2

h + ‖λ1/2Dy
+D

y
−v‖2

h + ‖μ1/2Dz
+D

z
−v‖2

hr

+ ‖μ1/2Dx
+D

x
−w‖2

h + ‖μ1/2Dy
+D

y
−w‖2

h + ‖λ1/2Dz
+D

z
−w‖2

hr

and

(30)

B = h

Ny∑
j=1

Nx∑
i=1

(λi,j,Nz

2
w2

i,j,Nz−1+
μi,j,Nz

2
(u2

i,j,Nz−1+v2
i,j,Nz−1)+h2μi,j,3/2(D

z
+wi,j,1)

2
)
,

respectively.
Note: The reduced scalar product (u, v)hr is similar to the standard scalar prod-

uct, except that it starts the summation from k = 2:

(w, v)hr = h3
Nx−1∑
i=1

Ny−1∑
j=1

Nz−1∑
k=2

wi,j,kvi,j,k, ‖v‖2
hr = (v, v)hr.

Proof. The identity (28) is derived in Appendix C. All terms on the right-hand
side of (28) are nonpositive when the functions μ and λ are nonnegative. Therefore the
operator is at least negative semidefinite. Negative definiteness is proved by showing
that

(31) (u, L(u)(u, v, w))h + (v, L(v)(u, v, w))h + (w,L(w)(u, v, w))h = 0

implies ui,j,k = 0, vi,j,k = 0, and wi,j,k = 0 at all grid points.
Assume that μi,j,k > 0 and λi,j,k > 0 for all i, j, k and that (31) holds. The

right-hand side of (28) is a sum of nonpositive terms. Therefore, each term must be
zero to make the sum zero. Hence the third scalar product term on the right-hand
side of (28) gives

Dz
+wi,j,k = 0, 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1, 1 ≤ k ≤ Nz − 1.
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Together with the boundary condition wi,j,Nz
= 0, this gives

0 = wi,j,Nz
= wi,j,Nz−1 = · · · = wi,j,1.

Thus wi,j,k = 0 everywhere, except possibly at k = 0. Next we show that ui,j,k =
0 for all i, j, k except possibly for k = 0. The seventh scalar product term on the
right-hand side of (28) gives

(32) D̃z
0ui,j,k + Dx

0wi,j,k = 0, 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1, 1 ≤ k ≤ Nz − 1.

Because wi,j,k = 0, (32) gives

ui,j,Nz = ui,j,Nz−2 = ui,j,Nz−4 = . . . ,(33)

ui,j,Nz−1 = ui,j,Nz−3 = ui,j,Nz−5 = . . . .(34)

The boundary term B contains u2
i,j,Nz−1, which therefore must be zero. Hence, (33)

and (34) together with the boundary condition ui,j,Nz = 0 give

0 = ui,j,Nz
= ui,j,Nz−1 = . . . = ui,j,1.

We have shown that ui,j,k = 0 for all i, j, k except possibly for k = 0. The property
vi,j,k = 0, except possibly for k = 0, follows in exactly the same way as for ui,j,k by
studying the sixth term on the right-hand side of (28). The possibilities ui,j,0 �= 0,
vi,j,0 �= 0, or wi,j,0 �= 0 remain. However, when (u, v, w) is zero for 1 ≤ k ≤ Nz, the
boundary conditions (20)–(22) give ui,j,0 = vi,j,0 = wi,j,0 = 0. We have now proved
that the operator (L(u), L(v), L(w)) is negative definite when μ and λ are positive
functions.

If μ = 0 and λ > 0, the operator has a nontrivial null space. Take, for example,
ui,j,k = fj,k, vi,j,k = gi,k, and wi,j,k = 0, with fj,k, gi,k satisfying fj,Nz = gi,Nz = 0
and periodic in the j- and i-directions, respectively, but otherwise arbitrary. Because
μ = 0, these functions satisfy the free surface boundary conditions (20)–(22). It is
an easy exercise to show that these functions make (28) equal to zero when μ = 0
everywhere. Hence the operator (L(u), L(v), L(w)) is negative semidefinite when μ = 0
and λ > 0.

The findings in Lemmas 1–3 are summarized in the following main theorem,
showing that the semidiscrete problem is well-posed.

Theorem 2. The solution of the semidiscrete scheme (17)–(19) subject to the
boundary conditions (20)–(25) satisfies

‖ρ1/2ut‖2
h + ‖ρ1/2vt‖2

h + ‖ρ1/2wt‖2
h − (u, L(u)(u, v, w))h

− (v, L(v)(u, v, w))h − (w,L(w)(u, v, w))h = C,

where C is a constant that depends on the initial data. The quantity

−(u, L(u)(u, v, w))h − (v, L(v)(u, v, w))h − (w,L(w)(u, v, w))h

is positive definite when μ > 0 and λ > 0 and is therefore a norm.
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2.2. Fully discrete equations. Following the theory in [18], we discretize (17)–
(19) in time according to

ρ

(
un+1 − 2un + un−1

δ2
t

)
= L(u)(un, vn, wn),(35)

ρ

(
vn+1 − 2vn + vn−1

δ2
t

)
= L(v)(un, vn, wn),(36)

ρ

(
wn+1 − 2wn + wn−1

δ2
t

)
= L(w)(un, vn, wn).(37)

To simplify the notation, we introduce the weighted ρ-norm

(w, v)ρ = h2
Nx−1∑
i=1

Ny−1∑
j=1

(
h

2
ρi,j,1wi,j,1vi,j,1 + h

Nz−1∑
k=2

ρi,j,kwi,j,kvi,j,k

)
, ‖v‖2

ρ = (v, v)ρ .

Trivial calculations give

(38)
(
w, ρ−1v

)
ρ

= (w, v)h .

To show that the fully discrete scheme is energy conserving, we consider the
quantity

Ce(tn+1) =
∥∥Dt

+u
n
∥∥2

ρ
+
∥∥Dt

+v
n
∥∥2

ρ
+
∥∥Dt

+w
n
∥∥2

ρ
−
(
un+1, ρ−1L(u)(un, vn, wn)

)
ρ

−
(
vn+1, ρ−1L(v)(un, vn, wn)

)
ρ
−
(
wn+1, ρ−1L(w)(un, vn, wn)

)
ρ

(39)

=
∥∥Dt

+u
n
∥∥2

ρ
+
∥∥Dt

+v
n
∥∥2

ρ
+
∥∥Dt

+w
n
∥∥2

ρ

−
(
un+1, Dt

+D
t
−u

n
)
ρ
−
(
vn+1, Dt

+D
t
−v

n
)
ρ
−
(
wn+1, Dt

+D
t
−w

n
)
ρ
.

We have the following energy conservation result for the difference scheme.
Theorem 3. The solution computed by the difference scheme (35)–(37) together

with the boundary conditions (20)–(25) satisfies

Ce(tn+1) = Ce(tn);

i.e., Ce(tn) is a conserved quantity for the fully discrete scheme.
Proof. Expanding the square in the term ||Dt

+u
n||2ρ (and similarly for v and w)

gives the identity

(40) δ2
tCe(tn+1) = ‖un+1‖2

ρ + ‖un‖2
ρ −

(
un+1, 2un + δ2

t ρ
−1L(u)(un, vn, wn)

)
ρ

+ ‖vn+1‖2
ρ + ‖vn‖2

ρ −
(
vn+1, 2vn + δ2

t ρ
−1L(v)(un, vn, wn)

)
ρ

+ ‖wn+1‖2
ρ + ‖wn‖2

ρ −
(
wn+1, 2wn + δ2

t ρ
−1L(w)(un, vn, wn)

)
ρ
.

We have

un+1 + un−1 = 2un + δ2
t ρ

−1L(u)(un, vn, wn)
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and corresponding expressions for v and w. Hence,

δ2
tCe(tn+1) = ‖un+1‖2

ρ + ‖un‖2
ρ −

(
un+1, un+1 + un−1

)
ρ

+ ‖vn+1‖2
ρ + ‖vn‖2

ρ

−
(
vn+1, vn+1 + vn−1

)
ρ

+ ‖wn+1‖2
ρ + ‖wn‖2

ρ −
(
wn+1, wn+1 + wn−1

)
ρ

= ‖un‖2
ρ + ‖un−1‖2

ρ −
(
un−1, 2un + δ2

t ρ
−1L(u)(un, vn, wn)

)
ρ

+ ‖vn‖2
ρ + ‖vn−1‖2

ρ −
(
vn−1, 2vn + δ2

t ρ
−1L(v)(un, vn, wn)

)
ρ

+ ‖wn‖2
ρ + ‖wn−1‖2

ρ −
(
wn−1, 2wn + δ2

t ρ
−1L(w)(un, vn, wn)

)
ρ
.

The relation (38) gives(
un−1, δ2

t ρ
−1L(u)(un, vn, wn)

)
ρ

=
(
un−1, δ2

tL
(u)(un, vn, wn)

)
h
,

so Lemma 1 yields

(41)
(
un−1, δ2

t ρ
−1L(u)(un, vn, wn)

)
ρ

+
(
vn−1, δ2

t ρ
−1L(v)(un, vn, wn)

)
ρ

+
(
wn−1, δ2

t ρ
−1L(w)(un, vn, wn)

)
ρ

=
(
un, δ2

t ρ
−1L(u)(un−1, vn−1, wn−1)

)
ρ

+
(
vn, δ2

t ρ
−1L(v)(un−1, vn−1, wn−1)

)
ρ

+
(
wn, δ2

t ρ
−1L(w)(un−1, vn−1, wn−1)

)
ρ
.

We conclude that

Ce(tn+1) = Ce(tn);

i.e., Ce(tn) is a conserved quantity for the fully discrete scheme.
To obtain an energy estimate we need to show that Ce > 0. This was done in [18]

for approximations of the scalar wave equation. We here perform a similar analysis
for the scheme (35)–(37). To make the presentation more compact, we introduce the
vector notation

(42)

(un+1,L(un))h =: (un+1, L(u)(un, vn, wn))h + (vn+1, L(v)(un, vn, wn))h
+ (wn+1, L(w)(un, vn, wn))h.

As we shall see below, it is natural to study the scaled eigenvalue problem

(43) ρ−1L(w) = ζw,

where w satisfies the boundary conditions (20)–(25). We know from Lemma 1 that
L is self-adjoint with respect to (·, ·)h. Therefore, ρ−1L is self-adjoint with respect to
(·, ·)ρ because

(v, ρ−1L(w))ρ = (v,L(w))h = (L(v),w)h = (ρ−1L(v),w)ρ.

Hence, the eigenvalues of (43) are real and Lemma 3 implies that they are negative,
i.e.,

(44) −max
m

|ζm|‖w‖2
ρ ≤ (w, ρ−1L(w))ρ ≤ −min

m
|ζm|‖w‖2

ρ.

We have the following stability result.
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Theorem 4. If the eigenvalues ζm of (43) satisfy the CFL condition

(45)
δ2
t

4
max
m

|ζm| < 1,

then the conserved quantity Ce(tn+1) is a norm which is bounded from below by

(46) Ce(tn+1) ≥
(

1 − δ2
t

4
max
m

|ζm|
)
‖Dt

+un‖2
ρ +

minm |ζm|
4

‖un+1 + un‖2
ρ.

Proof. Using the vector notation (42), we can write the conserved quantity (39)
as follows:

Ce(tn+1) =
∥∥Dt

+un
∥∥2

ρ
−
(
un+1,L(un)

)
h
.

Because the operator L is self-adjoint (Lemma 1),

(un+1,L(un))h =
1

2
(un+1,L(un))h +

1

2
(un,L(un+1))h.

Furthermore,

(un+1 + un,L(un+1 + un))h − (un+1 − un,L(un+1 − un))h
= 2(un,L(un+1))h + 2(un+1,L(un))h,

and (w,L(w))h = (w, ρ−1L(w))ρ. Hence,

(47)

δ2
tCe(tn+1) = ||un+1 − un||2ρ −

δ2
t

4
(un+1 + un, ρ−1L(un+1 + un))ρ

+
δ2
t

4
(un+1 − un, ρ−1L(un+1 − un))ρ.

The eigenvalue bound (44) gives

(48) δ2
tCe(tn+1) ≥

(
1 − δ2

t

4
max
m

|ζm|
)
‖un+1 − un‖2

ρ +
δ2
t

4
min
m

|ζm|‖un+1 + un‖2
ρ.

Hence, Ce(tn+1) is a norm when

1 − δ2
t

4
max
m

|ζm| > 0,

i.e., when the CFL condition (45) is satisfied.

2.3. Time step restrictions. In the case of constant ρ, μ, λ, and periodic
boundary conditions in all three directions, a von Neumann analysis gives the maxi-
mum eigenvalue

(49) ζvN =

⎧⎪⎪⎨⎪⎪⎩
− 4

h2

4μ + λ

ρ
, λ < 2μ,

− 9

2h2

(2μ + λ)2

ρ(μ + λ)
, λ ≥ 2μ.

(We mention in passing that the largest eigenvalue occurs for the highest wave number
on the grid (ωh = π) when λ < 2μ, while it arises for ωh = 2π/3 when λ ≥ 2μ.
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Fig. 1. Magnitude of the two-dimensional discrete Fourier transform of w at t = 1.78, along
the z = 0 (stress-free) surface calculated with a time step allowed by the von Neumann analysis,
which underestimates the largest eigenvalue of the spatial operator. In this calculation, ρ = 1, μ = 1,
λ = 79, h = 0.04, δt = 0.95δtvN , and the initial data were given by (66). Note that all energy is
concentrated around the wave numbers ωxh ≈ ωyh ≈ 2π/3.

This behavior is different from the corresponding two-dimensional problem, where
the largest eigenvalue always happens when ωh = π.) If ζvN is used to estimate the
largest eigenvalue maxm |ζm|, we get the time step restriction δt < δtvN , where

(50) δtvN =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h

√
ρ

4μ + λ
=

h√
c2p + 2c2s

, cp < 2cs,

√
8h

3

√
ρ(μ + λ)

2μ + λ
=

√
8h

3

√
c2p − c2s

c2p
, cp ≥ 2cs.

Unfortunately, numerical simulations using a time step smaller but close to the limit
(50) become unstable when a stress-free boundary is imposed and the ratio ν = cp/cs
is large; see Figure 1.

To estimate how the free-surface boundary condition modifies the time step re-
striction, we study the stability of the discrete half-plane problem with constant values
of ρ, μ, λ. In this approximation, we assume a 2π-periodic solution in the x- and y-
directions, expand the grid in the z-direction by taking Nz → ∞, and replace the
Dirichlet boundary condition (23) by

(51) lim
k→∞

|un
i,j,k| = 0.

Several stability definitions for difference approximations are possible, and we refer
to [11] for a discussion. Here we use a normal-mode approach and define the half-plane
problem to be stable if there are no solutions of the form

(52) u(xi, yj , zk, tn) = χneı(ωxxi+ωyyj)ûk,

∞∑
k=1

|ûk|2 < ∞, |χ| > 1,
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where ı =
√
−1. For simplicity we assume that Nx = Ny is odd. Then ωx, ωy =

0,±1,±2, . . . ,±(Nx − 1)/2.
It is straightforward to perform the stability analysis if we first rewrite our scheme

(17)–(19) into an equivalent form, where the one-sided discretization of the cross-
derivatives at k = 1 are replaced by the centered discretization used for k ≥ 2, i.e.,
replace D̃z

0 by Dz
0 in (17)–(19). We arrive at an equivalent problem by introducing

compensating terms in the boundary conditions; see Appendix A. In the case of
constant coefficients, the compensated stress-free boundary conditions are

Dz
0ui,j,1 + Dx

0

(
wi,j,1 + (ν2 − 1)

h2

4
Dz

+D
z
−wi,j,1

)
= 0,(53)

Dz
0vi,j,1 + Dy

0

(
wi,j,1 + (ν2 − 1)

h2

4
Dz

+D
z
−wi,j,1

)
= 0,(54)

ν2Dz
0wi,j,1 + Dx

0

(
(ν2 − 2)ui,j,1 + (ν2 − 1)

h2

4
Dz

+D
z
−ui,j,1

)
+Dy

0

(
(ν2 − 2)vi,j,1 + (ν2 − 1)

h2

4
Dz

+D
z
−vi,j,1

)
= 0.(55)

After inserting the ansatz (52) into the modified version of (17)–(19), we arrive
at the eigenvalue problem

(56)
ζhp
c2s

ûk :=
χ− 2 + χ−1

δ2
t c

2
s

ûk = − 4

h2

(
sin2 ξ

2
+ sin2 φ

2

)
ûk + Dz

+D
z
−ûk

+ (ν2 − 1)

⎛⎝ − 4
h2 sin2 ξ

2 − 1
h2 sin ξ sinφ ı

h sin ξDz
0

− 1
h2 sin ξ sinφ − 4

h2 sin2 φ
2

ı
h sinφDz

0
ı
h sin ξDz

0
ı
h sinφDz

0 Dz
+D

z
−

⎞⎠ ûk,

where ξ = ωxh and φ = ωyh satisfy −π ≤ ξ ≤ π, −π ≤ φ ≤ π. Inserting the ansatz
(52) into the boundary conditions (53)–(55) gives

Dz
0 û1 +

ı

h
sin ξ

(
ŵ1 + (ν2 − 1)

h2

4
Dz

+D
z
−ŵ1

)
= 0,(57)

Dz
0 v̂1 +

ı

h
sinφ

(
ŵ1 + (ν2 − 1)

h2

4
Dz

+D
z
−ŵ1

)
= 0,(58)

ν2Dz
0ŵ1 +

ı

h
sin ξ

(
(ν2 − 2)û1 + (ν2 − 1)

h2

4
Dz

+D
z
−û1

)
+

ı

h
sinφ

(
(ν2 − 2)v̂1 + (ν2 − 1)

h2

4
Dz

+D
z
−v̂1

)
= 0.(59)

The eigenvalue problem (56) can be solved using the ansatz

(60) ûk = Uκk, where |κ| < 1.

Lemma 1 is straightforward to generalize to the half-plane problem, so the spatial
operator is self-adjoint, and the generalization of Lemma 3 shows that the spatial op-
erator is negative semidefinite. All eigenvalues ζhp are therefore real and nonpositive.

Next we study the relation between ζhp and χ in (56). The roots of the quadratic
equation χ2 − (2 − |ζhp|δ2

t )χ + 1 = 0 are given by

χ1,2 = 1 − |ζhp|δ2
t

2
±
√

Δ, Δ = −|ζhp|δ2
t

(
1 − |ζhp|δ2

t

4

)
.
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If Δ < 0, the roots are complex conjugates. Since the product of the roots equals one,
both roots satisfy |χ1,2| = 1. If Δ = 0, χ1,2 = −1 is a double root. Finally, if Δ > 0,
both roots are real. One root will have magnitude greater than one and one less than
one. Hence, the condition |χ| > 1 in the normal-mode ansatz (52) is equivalent to
Δ > 0. Conversely, there are no solutions of the form (52) if all eigenvalues ζhp satisfy

−|ζhp|δ2
t

(
1 − |ζhp|δ2

t

4

)
≤ 0, i.e.,

δ2
t

4
|ζhp| ≤ 1.

Hence the normal-mode stability definition leads to the same type of time step re-
striction as in the energy method (Theorem 4), and we can use the most negative
eigenvalue ζhp to approximate the eigenvalue in (45). This approximation will lead
to a more restrictive time step limitation than in the von Neumann analysis if there
are any eigenvalues ζhp such that

|ζhp| > |ζvN |.

Inserting (60) into (56) gives

(61) QU = 0,

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−4(ν2 sin2 ξ
2 + sin2 φ

2 )+

κ− 2 + κ−1 − ζ̃
−(ν2 − 1) sin ξ sinφ (ν2 − 1)ı sin ξ(κ− κ−1)

−(ν2 − 1) sin ξ sinφ
−4(sin2 ξ

2 + ν2 sin2 φ
2 )+

κ− 2 + κ−1 − ζ̃
(ν2 − 1)ı sinφ(κ− κ−1)

(ν2 − 1)ı sin ξ(κ− κ−1) (ν2 − 1)ı sinφ(κ− κ−1)
−4(sin2 ξ

2 + sin2 φ
2 )+

ν2(κ− 2 + κ−1) − ζ̃

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where ζ̃ = ζhph
2/c2s. Multiply (61) by κ, and let

(62) P (ζ̃, κ, ξ, φ, ν) = 0

be the corresponding characteristic equation. Here P is a cubic polynomial in ζ̃ and
a polynomial of degree six in κ. For fixed ν, ξ, and φ there are six roots κ for each
ζ̃. The following lemma is a standard result (see, e.g., [12]), which we here formulate
for our discretization of the elastic wave equation.

Lemma 4. The characteristic equation P = 0 has six roots κl. For ζ̃ < −|ζ̃vN | =
−|ζvN |h2/c2s, three of these roots have |κ| < 1 and three have |κ| > 1.

Proof. A polynomial of degree six has six roots (counting multiplicity). If any
κ is such that |κ| = 1, then κ = eiα for some real α, and (62) becomes identical
to the relation obtained in the von Neumann analysis of the fully periodic problem.
We know that there are no eigenvalues with magnitude greater than |ζ̃vN | in this
case. Therefore there can be no κ on the unit circle when ζ̃ < −|ζ̃vN |. Second, take
φ = ξ = 0. It is not hard to see that the characteristic equation P = 0 becomes[

κ2 − (2 + ζ̃)κ + 1
] [

κ2 − (2 + ζ̃)κ + 1
] [

κ2 −
(

2 +
ζ̃

ν2

)
κ + 1

]
= 0.

Therefore the six roots κ satisfy the pairwise relations κ1κ4 = 1, κ2κ5 = 1, and
κ3κ6 = 1. Since no root can be on the unit circle when ζ̃ < −|ζ̃vN |, there must be
three roots inside the unit circle and three roots outside of it. Furthermore, the roots
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κ are smooth functions of φ, ξ, ν, and ζ̃. Because they cannot move across the unit
circle when ζ̃ < −|ζ̃vN |, the roots are always divided into these two groups for all
values of φ, ξ, ν, and for any ζ̃ such that ζ̃ < −|ζ̃vN |.

It follows from Lemma 4 that the general solution of (56) subject to the boundary
condition (51) is

(63) ûk = C1U1κ
k
1 + C2U2κ

k
2 + C3U3κ

k
3 , |κl| < 1, l = 1, 2, 3,

where Ul are the eigenvectors corresponding to κl, l = 1, 2, 3, respectively. For each
ζ̃ < −|ζ̃vN |, Ul is the null vector of the linear system (61) when the root κl is
substituted for κ.

Inserting the general solution (63) into the stress-free boundary conditions (57)–
(59) leads to a homogeneous linear system for the coefficients C1, C2, and C3:

(64) A

⎛⎝ C1

C2

C3

⎞⎠ = 0,

where A = A(ζ̃, ξ, φ, ν) is a three by three matrix. There are nontrivial solutions of
(64) if and only if detA = 0. If (64) has a nontrivial solution (C1, C2, C3)

T for some
ζ̃, then the corresponding ζhp is an eigenvalue of (56).

Since the algebra involved in forming detA is rather complicated, we have resolved
to calculate the roots of detA = 0 numerically. The determinant depends on four
parameters, where ν = cp/cs is a material constant and the angles ξ, φ satisfy −π ≤
ξ, φ ≤ π. For each fixed ν, we need to find the angles ξ, φ that give the most negative
solution ζ̃ of detA = 0. A straightforward approach is to discretize ξ, φ on a fine
mesh:

ξp = −π + p
2π

Nξ
, p = 0, 1, 2, . . . , Nξ,

φq = −π + q
2π

Nφ
, q = 0, 1, 2, . . . , Nφ.

At each mesh point detA is a complex-valued function of the real variable ζ̃, and we
need to consider only ζ̃ < −|ζ̃vN |, since only such eigenvalues can restrict the time
step beyond the von Neumann limit. At each point (ξp, ηq), we apply a numerical

root-finding routine to locate the most negative solution ζ̃p,q of detA = 0. We then

use minp,q ζ̃p,q as an approximation of the most negative solution ζ̃ corresponding to
ν. The fundamental operation when applying a numerical root-finding routine is to
evaluate detA at a given value of ζ̃, which can be broken down into the following
steps:

1. Solve the characteristic equation (62) for κ. Select the three roots with
|κl| < 1;

2. find the three eigenvectors Ul by solving (61) for each κl, l = 1, 2, 3;
3. form the matrix A by inserting (63) into (57)–(59);
4. compute the determinant of A.

Using the numerical root-finding procedure outlined above, we calculated the
ratio between the largest stable time step for the half-plane problem with a stress-free
boundary and the largest stable time step for the fully periodic case; see Figure 2. The
numerical root-finding procedure located the largest eigenvalue |ζhp| at φ = ξ = 2π/3.
Hence, the spatial frequencies ωxh = ωyh = 2π/3 should grow the fastest if the time
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Fig. 2. Ratio between the maximum stable time step for the half-plane problem with a free sur-
face and that of the fully periodic problem. The line with boxes corresponds to the three-dimensional
problem, and the two-dimensional case is shown with a solid line.

step exceeds the stability limit and ν is large. This prediction was confirmed by
spatially Fourier transforming an unstable numerical solution; see Figure 1.

For large ν, the solutions of detA = 0 corresponding to the largest |ζ̃| were
numerically found to occur when κ1 is real with −1 < κ1 < 0 and κ2 = κ̄3 with
−1 < Re(κ2,3) < 0. Thus, the eigenfunction corresponding to the largest eigenvalue
oscillates in the z-direction with two different frequencies: the fastest frequency on
the mesh |κ1|k(−1)k and more slowly |κ2|k(exp(±ı arg κ2))

k, where arg(κ2) ≈ 2π/3
for large ν. This boundary layer behavior has been observed in numerical solutions
when the time step exceeds the stability limit.

Note that the limitations imposed on the time step by the stress-free boundary
are very moderate even for extreme ν values (most solid materials occuring in na-
ture have cp/cs ≤ 3). As ν gets large, the largest stable time step for the half-plane
problem tends to a factor exceeding 0.91 of that for the fully periodic problem. Our
practical experience with the time-stepping algorithm on bounded domains with vari-
able coefficients and a free surface boundary condition on one side indicates that it
is stable when the half-plane problem with constant coefficients is stable, using the
smallest time step obtained by evaluating cp and cs at all grid points. Hence, we can
handle all values of cp/cs by reducing the time step by less than 9% compared to
the von Neumann value. This makes our method practically useful for all isotropic
materials.

The additional time-step restriction due to the free surface boundary condition
indicates that there are numerical surface waves which travel faster than any volume
waves on the grid. In the continuous problem, Rayleigh (surface) waves always have
a phase velocity which is smaller than cs. Hence, it is likely that the numerical phase
velocity for Rayleigh waves will depend on the grid resolution in terms of the number
of grid points per wavelength. Numerical experiments along these lines are presented
in section 4.1.
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We also analyzed the two-dimensional version of the scheme by assuming that the
solution does not depend on y. Here a von Neumann analysis of the doubly periodic
case (ρ, μ, and λ constant) gives a time step restriction

(65) δt <
h
√
ρ√

3μ + λ
=

h√
c2p + c2s

.

The stability restriction on the time step with the free surface boundary condition
can be obtained using the above root-finding procedure with φ = 0. The results are
given in Figure 2 together with the three-dimensional case. When ν becomes large,
the largest stable time step for the half-plane problem tends to a factor exceeding
0.94 of that for the fully periodic case (i.e., 6% smaller). As in the three-dimensional
problem, the largest eigenvalue occurs for the spatial frequency ωxh = 2π/3.

2.4. Numerical tests of the scheme. In order to test the implementation of
our method we first ran a number of computations without forcing with decreasing
grid size h to evaluate the discrete energy Ce as a function of time. We took μ = 0.16,
λ = 0.49, ρ = 1, and started the computations with the initial data in spherical
coordinates:

(66)
U0(r) = ∇

(
P10(r)

r

)
, U1(r) = −cp∇

(
P ′

10(r)

r

)
,

r =
√

(x− 2)2 + (y − 1.5)2 + (z − 1.5)2,

where P10(ξ) is the four times continously differentiable function

(67) P10(ξ) =

⎧⎨⎩
0, ξ <= 0,
1024ξ5

(
1 − 5ξ + 10ξ2 − 10ξ3 + 5ξ4 − ξ5

)
, 0 < ξ < 1,

0, ξ ≥ 1.

(We note in passing that u(r, t) = ∇(P10(r− cpt)/r) is an analytic solution of the free
space problem.) We impose a stress-free boundary condition at z = 0 and enforce zero
displacement conditions on all other boundaries. The size of the computational do-
main was a = 4, b = 3, and c = 3. Since there is no forcing, the discrete energy Ce(tn)
should remain constant. The energy in the continuous problem is often decomposed
into its kinematic and potential components

E(t) = K(t) + U(t),

where

K(t) =
1

2

∫
Ω

ρ(u2
t + v2

t + w2
t ) dΩ,

U(t) =
1

2

∫
Ω

λ(ux + vy + wz)
2 + 2μ(u2

x + v2
y + w2

z)

+ μ
(
(uy + vx)2 + (uz + wx)2 + (vz + wy)

2
)
dΩ.

In the absence of forcing, E(t) = const. By dividing (47) by δ2
t it is straightforward

to see that

Ce(tn+1) = 2E(tn+1/2) + O(h2).
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Fig. 3. Time evolution of the relative error in the discrete energy (Ce(t) − 2E(t))/2E(t) for
different grid sizes. The discrete energy is conserved to within roundoff errors for all cases. As can
be seen, the discrete energy converges towards the continuous value at the expected O(h2) rate. Here
h = 0.04 (∗), 0.02 (·), 0.01 (−), and 0.005 (−·).

Hence, the discrete energy Ce should not only be conserved in time, but its value
should also converge to 2E(t) as the grid is refined. Both of these properties are
confirmed by our calculations; see Figure 3.

As a second test of our implementation, we check the order of accuracy of the
scheme using the method of analytical solutions (also known as twilight-zone forc-
ing [5]). The idea is to construct forcing functions f and g so that the solution of
the test problem becomes a known function utrue(x, t). We then solved the test prob-
lem using our implementation of the method and compared our numerical results to
the known solution on a succession of finer grids in order to check the convergence
properties. Our constructed solution was

utrue(x, t) = sin(ω(x− ct)) sin(ωy) sin(ωz),

vtrue(x, t) = sin(ωx) sin(ω(y − ct)) sin(ωz),

wtrue(x, t) = sin(ωx) sin(ωy) sin(ω(z − ct)),

where ω and c are constants. The material properties were chosen to vary smoothly
according to

μ(x) = 1 + cos2(πx) cos2(πy) cos2(πz),

λ(x) = 1 + sin2(πx) sin2(πy) sin2(πz),

ρ(x) = 1.

A normal stress condition was imposed on the z = 0 surface, and inhomogeneous
Dirichlet conditions were imposed on all other boundaries. The computational domain
had sizes a = 2, b = 2, and c = 2. A number of calculations with increasingly
fine grid spacing were run, and the errors were evaluated in the discrete max-norm.
(The discrete max-norm of a vector grid function vh = (uh, vh, wh) is defined as
||vh||∞ = max(maxi,j,k |uh|,maxi,j,k |vh|, maxi,j,k |wh|).) As expected we obtained
second order convergence when both the forcing and the solution are smooth; see
Table 1. Nonsmooth forcings and solutions will be discussed in section 3.
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Table 1

Errors in max-norm for decreasing h and smooth analytical solution utrue. Convergence rate
indicates second order convergence. Here c = 1 and ω = 2π.

t = 1
h ||vh − utrue||∞ Rate

0.04 0.04331
0.02 0.01062 4.079
0.01 0.002654 4.00
0.005 0.0006627 4.00

3. Singular source terms. In seismic wave propagation the source term is
often applied at a point, along a line, or over a surface in three-dimensional space.
Sources along lines or surfaces are commonly decomposed into a number of point
sources distributed along the corresponding line or surface:

(68) f(x, t) =
∑
r

f (F )
r (x, t) +

∑
r

f (M)
r (x, t).

Two types of point sources occur in seismic applications. Point forces (f
(F )
r ) are, for

example, used to model internal forcings due to volcanic eruptions or external forcings
applied to the free surface

(69) f (F )
r (x, t) = gr(t)Frδ(x − xr),

where δ(x) is the Dirac distribution and Fr is a constant vector. The second type of

point source is the point moment (or double couple), denoted by f
(M)
r in (68). Point

moments are often used to model earthquakes and explosions [4] and are of the form

(70) f (M)
r (x, t) = gr(t) Mr · ∇δ(x − xr),

where ∇δ(x) is the gradient of the Dirac distribution, and Mr is a constant symmetric
tensor.

Each term in (68) is applied at a location (xr, yr, zr), and it is desirable to make
this location independent of the grid so that the numerical modeling can be made
as accurate as possible and no artifacts are generated by “stair stepping” the point
sources along a smooth line or surface in three-dimensional space. Due to the singular
nature of point sources, we can only expect the numerical solution to converge away
from the location of the sources. Furthermore, we can expect that different numerical
techniques are necessary for handling the two types of sources, since the point force
depends on the Dirac distribution while the point moment depends on its gradient,
which is a more singular function.

The analyses of Waldén [26] and Tornberg and Engquist [24] demonstrate that
it is possible to derive regularized approximations of the Dirac distribution and its
gradient, which result in pointwise convergence of the solution away from the sources.
Based on these analyses, we define a hat function

(71) δhat(x) =
1

h

{
1 − |x|/h, |x| < h,
0, elsewhere,

and use δhat(x−xr)δhat(y−yr)δhat(z−zr) to approximate δ(x) in (69). To approximate
the gradient of a Dirac distribution, we start from the piecewise cubic function

(72) δcube(x) =
1

h

⎧⎨⎩
1 − |x/h|/2 − |x/h|2 + |x/h|3/2, |x| < h,
1 − 11|x/h|/6 + |x/h|2 − |x/h|3/6, h ≤ |x| < 2h,
0, elsewhere.
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We then use ⎛⎝ δ′cube(x− xr)δhat(y − yr)δhat(z − zr)
δhat(x− xr)δ

′
cube(y − yr)δhat(z − zr)

δhat(x− xr)δhat(y − yr)δ
′
cube(z − zr)

⎞⎠
to approximate the Cartesian components of ∇δ(x − xr) in (70). Note that neither
(71) nor (72) need to be aligned with the grid.

3.1. Spatial regularity. To study the relation between smoothness of the time
function g(t) in the source term and smoothness in the space of the solution, we
analyze the related problem of the scalar wave equation with a singular source term.
In particular, we study the problem on an infinite domain with the forcing term
applied at the point (0, 0, 0) with homogeneous initial data:

ptt = ∇2p + g(t)δ(x), x ∈ R3, t ≥ 0,

p(x, 0) = pt(x, 0) = 0.

The Fourier transform of this equation is

d2p̂

dt2
= −(k2

x + k2
y + k2

z)p̂ + g(t), t ≥ 0,(73)

p̂(kx, ky, kz, 0) = p̂t(kx, ky, kz, 0) = 0,(74)

where the Fourier transform is given by

p̂(kx, ky, kz, t) =

∫ ∫ ∫
p(x, y, z, t)e−i(xkx+yky+zkz) dx dy dz.

Equations (73)–(74) are solved by

(75)

p̂(kx, ky, kz, t) =

{∫ t

0

∫ τ

0
g(τ ′) dτ ′ dτ, k = 0,

1
k

(
sin(kt)

∫ t

0
cos(kτ)g(τ) dτ − cos(kt)

∫ t

0
sin(kτ)g(τ) dτ

)
, k > 0,

where k =
√
k2
x + k2

y + k2
z . If g(t) is continuously differentiable, we can integrate (75)

by parts:

p̂(kx, ky, kz, t) =
1

k2

(
g(t) − cos(kt)g(0) − sin(kt)

∫ t

0

sin(kτ)g′(τ)dτ

− cos(kt)

∫ t

0

cos(kτ)g′(τ)dτ

)
.

By assuming that g(t) has compact support, i.e., g(t) ≡ 0 for t ≤ 0 and t ≥ T , we get

p̂(kx, ky, kz, t) =
1

k2

(
− sin(kt)

∫ t

0

sin(kτ)g′(τ) dτ

− cos(kt)

∫ t

0

cos(kτ)g′(τ) dτ

)
, t ≥ T.

The Fourier transform decays as 1/k2. We can continue integrating by parts as long
as g(t) is sufficiently differentiable, gaining one order of k for each integration. This
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shows that the solution p(x, t) has a Fourier transform that decays as 1/kq for t > T
if g(t) has compact support and is q − 1 times differentiable in time. Furthermore, p̂
is bounded because the singularity at k = 0 is removable:

lim
k→0

p̂(kx, ky, kz, t) =

∫ t

0

(t− τ)g(τ) dτ =

∫ t

0

∫ τ

0

g(τ ′) dτ ′ dτ.

Therefore, ∫ ∫ ∫
(1 + k2q′)|p̂|2 dkx dky dkz < ∞

for q′ < q − 3/2. By the Sobolev lemma [10], p can be identified with a function that
has m continous derivatives for m < q′− 3/2 < q− 3. We conclude that for t > T the
solution p(x, t) will have m continuous derivatives if g is compactly supported and
smooth. Here m can be made arbitrarily large by choosing g(t) sufficiently smooth.

If g(t) does not tend to zero for large t, the solution will remain singular at the
location of the point source but will be smooth away from it.

3.2. Free space solutions. Let the free space Green’s (dyadic) function for
the elastic wave equation in a homogeneous material be G(x, t); see [4]. Assuming
homogeneous initial data, the analytical solution of the elastic wave equation due to a
source function f(x, t) follows as the space and time convolution between the Green’s
function and the source term

u(x, t) =

∫
t

∫
Ω

f(x′, t′) · G(x − x′, t− t′) dx′ dt′.

In the special case when the source is a point force, the spatial convolution becomes

trivial due to the Dirac distributions in f
(F )
r , and the expression reduces to a time

integral over t′. Near the source, the solution behaves like 1/|x − xr|. A closed form
solution can be obtained when the time integration can be performed analytically, for
instance, when g(t) is a polynomial function.

For a point moment source term f
(M)
r , the analytical solution can be written

u(x, t) =

∫ t

0

∫
Ω

gr(t
′) (Mr · ∇δ(x′ − xr)) · G(x − x′, t− t′) dx′ dt′

=

∫ t

0

gr(t
′) Mr : ∇G(x − xr, t− t′) dt′,

where the colon represents the tensor contraction over two indices. Near the point
moment, the solution behaves like 1/|x−xr|2, so it is more singular than in the point
force case.

To investigate how the numerical solution converges when the source function is
singular, we ran a number of tests with point forces and point moments using the
time function g(t) = P10(t) defined in (67). This function has compact support in
0 ≤ t ≤ 1 and is four times continuously differentiable. We took a computational
domain with a = 2, b = 2, c = 2, and used the material parameters ρ = 1, λ = 0.32,
μ = 0.16. Dirichlet boundary conditions were enforced on all boundaries, but the
boundaries have no influence on the solution until t > 1.25 since cp = 0.8 and the
point sources were centered at xr = (1, 1, 1). The errors were measured at two differ-
ent times in discrete max-, 2-, and 1-norms. Since the analytical solution is singular
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Table 2

Relative error in the numerical solution of the free space problem at time t = 0.5 (singular
solution) due to a point force (top) and a point moment (bottom), measured in max-, 2-, and 1-
norms. Here vh and u denote the numerical and analytical solutions, respectively.

Point force

h
||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1 Rate∞ Rate2 Rate1

0.04 0.04833 0.08293 0.1011
0.02 0.04108 0.05174 0.03248 1.176 1.602 3.113
0.01 0.03936 0.03525 0.009970 1.043 1.467 3.257
0.005 0.03894 0.02470 0.002955 1.010 1.427 3.373

Point moment

h
||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1 Rate∞ Rate2 Rate1

0.04 0.3051 0.2805 0.2272
0.02 0.3208 0.2760 0.1154 0.9509 1.016 1.969
0.01 0.3253 0.2769 0.05759 0.9871 0.9967 2.003
0.005 0.3264 0.2782 0.02872 0.9970 0.9953 2.005
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Fig. 4. The 2-logarithm of the error along a line going through the source point for a point force
(left) and a point moment source (right), both located at x = 1. Note that the error decays as O(h2)
away from the source but not near it. Near the source, the error is about 211 ≈ 2000 times larger
for the point moment than for the point force. The grid sizes were h = 0.04 (−·), 0.02 (·), 0.01 (−),
and 0.005 (∗).

at the point where the source applies, that point was excluded from the calculation
of the norms. (The 2- and 1-norms for a vector grid function u are defined as ||u||22 =
h3

∑
i,j,k(|ui,j,k|2+ |vi,j,k|2+ |wi,j,k|2) and ||u||1 = h3

∑
i,j,k(|ui,j,k|+ |vi,j,k|+ |wi,j,k|).)

First we evaluated the errors at t = 0.5 when g(t) > 0; see Table 2. As expected we did
not achieve second order convergence because the solution of the continuous problem
is singular. Also note that the convergence rate is slower for the point moment source
than in the less singular point force case. In Figure 4, we show the errors as a function
of the distance from the singularity. Away from the singularity, the errors are smooth
in space and decay like O(h2) as the grid size tends to zero. However, near the source
the errors do not decay as the grid is refined, and this explains the convergence num-
bers in Table 2. Second, we evaluated the errors at t = 1.2, when g(t) = 0; see Table 3.
After the source term has vanished the solution becomes smooth everywhere, and our
results show the proper second order convergence rate in accordance with theory.

We remark that in the point moment source case it is important to use the δ′cube

approximation in the gradient of the Dirac distribution, as opposed to δ′hat. Otherwise
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Table 3

Relative error in the numerical solution of the free space problem at time t = 1.2 (smooth
solution) due to a point force (top) and a point moment (bottom), measured in max-, 2-, and 1-
norms. Here vh and u denote the numerical and analytical solutions, respectively.

Point force

h
||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1 Rate∞ Rate2 Rate1

0.04 0.04516 0.03984 0.04122
0.02 0.01180 0.01001 0.01025 3.831 3.984 4.021
0.01 0.003023 0.002512 0.002560 3.907 3.988 4.004
0.005 0.0007592 0.0006287 0.0006400 3.983 4.000 4.00

Point moment

h
||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1 Rate∞ Rate2 Rate1

0.04 0.1170 0.1016 0.09981
0.02 0.03400 0.02762 0.02681 3.440 3.678 3.724
0.01 0.008872 0.007109 0.006855 3.833 3.885 3.908
0.005 0.002244 0.001793 0.001724 3.961 3.972 3.985

Table 4

Relative error in the numerical solution of Lamb’s problem at t = 0.5 (top) (when the solution
is singular) and at t = 1.1 (bottom) (when the solution is smooth), measured in max-, 2-, and 1-
norms. Here vh and u denote the numerical and analytical solutions, respectively.

t = 0.5

h
||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1 Rate∞ Rate2 Rate1

0.04 0.02797 0.08631 0.2007
0.02 0.01758 0.05312 0.1102 1.591 1.625 1.821
0.01 0.01547 0.04002 0.05028 1.136 1.327 2.192
0.005 0.01696 0.03696 0.02305 0.9121 1.083 2.181

t = 1.1

h
||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1 Rate∞ Rate2 Rate1

0.04 0.2892 0.3081 0.3686
0.02 0.1082 0.1186 0.1408 2.673 2.598 2.618
0.01 0.03138 0.03496 0.04175 3.448 3.392 3.372
0.005 0.008189 0.009194 0.01100 3.832 3.802 3.795

the convergence rate will be slower than second order in the grid size (example not
shown to conserve space).

3.3. Half spaces and Lamb’s problem. Point forcing on the boundary of a
half space is referred to as Lamb’s problem [20]. Analytical solutions for the three-
dimensional problem have been presented by a number of authors with different de-
grees of applicability. For the case of a point force directed normal to the free surface
z = 0, the general solution can be found in [22] or [9]. To test the accuracy of the
numerical solutions, we performed a grid refinement study on a computational domain
with sizes a = 4, b = 4, c = 2, enforcing a free surface boundary condition along z = 0
and Dirichlet conditions on all other boundaries. We assumed a Poisson material with
ρ = 1, μ = 1, and λ = 1, i.e., cp/cs =

√
3, and used the same time function g(t) as in

the free space case. In this experiment, the point force was applied at xr = (2, 2, 0),
so the Dirichlet boundaries should not affect the solution until t > 1.15. The error
in the numerical solution was evaluated both at t = 0.5, when the solution of the
continuous problem is singular, and at t = 1.1, when the solution is smooth. We
report only the error along the free surface, because the analytical solution is difficult
to evaluate in the interior of the domain. As in the free space problem, we observe
second order convergence only when the solution is smooth in space; see Table 4.
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4. Applications and extensions of the method.

4.1. Surface waves. The elastodynamic equations together with the stress-free
boundary condition admit solutions in the form of surface waves, i.e., waves propagat-
ing along the surface with amplitude decaying exponentially away from the surface.
For the homogeneous two-dimensional half-plane problem in z ≥ 0, these solutions
are commonly referred to as Rayleigh waves and have the form

u(x, z, t) = A

(
e−ηpωz −

(
1 − c2r

2c2s

)
e−ηsωz

)
sin(ω(crt− x)),(76)

w(x, z, t) = A

(
1 − c2r

c2p

)1/2
(
−e−ηpωz +

(
1 − c2r

2c2s

)−1

e−ηsωz

)
cos(ω(crt− x)),(77)

where

ηp =

(
1 − c2r

c2p

)1/2

, ηs =

(
1 − c2r

c2s

)1/2

.

Here cr is the phase velocity of the wave, which is the real root of the Rayleigh
equation (

2 − c2r
c2s

)2

− 4

(
1 − c2r

c2p

)1/2 (
1 − c2r

c2s

)1/2

= 0, 0 < cr < cs.

The waves described by (76)–(77) are nondispersive; i.e., cr is independent of ω.
However, the discretization introduces errors that can be interpreted as a numerical
dispersion relation where the phase velocity depends on the resolution on the grid.
The numerical dispersion relation for our interior difference stencil coincides with
previous central difference schemes which were analyzed by Cohen [7]. For surface
waves, the numerical dispersion relation provides the numerical phase velocity c∗r as
a function of the resolution ωh, which often is expressed in terms of the number of
grid points per wavelength

PPW =
2π

ωh
.

Since it is very complicated to analytically derive the numerical dispersion relation
for surface waves, we instead investigate the relation by numerical experiments using
a two-dimensional version of our method. A free surface condition was imposed at
z = 0, and periodic boundary conditions were used in the x-direction. We enforced
(76)–(77) as initial data, which contains only a single spatial frequency ω. Hence, the
numerical solution should essentially advect the initial data with a modified phase
velocity c∗r . We determined c∗r by visually inspecting the solution along the surface at
time t = 1/cr and comparing the positions of the numerical and analytical solutions;
see Table 5. Note that the visual inspection is not very precise when the solution
is poorly resolved on the grid (PPW < 5), so these results should be interpreted
accordingly. Despite this uncertainty, it is clear that the numerical phase velocity
increases rapidly as ωh approaches 2π/3 and ν ≥ 3. It is interesting to note that
this value of ωh coincides with the spatial frequency of the fast surface waves which
determine the stability limit of the time step; cf. section 2.3.
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Table 5

Numerical dispersion relation for the finite difference scheme applied to Rayleigh waves. The
table shows the ratio between the estimated phase velocity in the numerical solution and its contin-
uous value, using different number of grid points per wavelength (PPW) and ν.

c∗r/cr
PPW ν = 2 ν = 3 ν = 5 ν = 10

40 1.0028 1.0065 1.017 1.055
20 1.011 1.022 1.052 1.12
10 1.031 1.06 1.11 1.2
8 1.043 1.083 1.13 1.5
6 1.049 1.095 1.35 1.63
5 1.07 1.11 1.4 1.72
4 1.095 1.14 1.65 1.78

3.5 1.16 1.4 2.76 2.9

4.2. Nonreflecting boundary conditions. When modeling seismic events such
as the simplified earthquake in section 4.3, it is desirable to truncate the computational
domain without causing significant amounts of artificial reflections. Many different
methods, including absorbing, nonreflecting, and perfectly matching techniques have
been proposed in the literature. Here we will use the first order nonreflecting boundary
conditions developed by Clayton and Engquist [6]. The well-known idea behind these
boundary conditions is to impose a differential equation on the boundary which allows
wave propagation only in the outward direction. For boundaries with x = const, the
boundary conditions are

(78) ut = ±cpux, vt = ±csvx, wt = ±cswx,

where the positive signs are taken for the lower boundary x = 0 and the negative signs
for the upper boundary x = a. Similar advection equations are imposed at boundaries
with y = const or z = const.

Away from edges in the computational domain, we have found that the box scheme
discretization [6] of the boundary condition (78) works well. At the edges of the do-
main, i.e., where two nonreflecting boundaries meet, Clayton and Engquist suggested
applying the nonreflecting boundary condition in a diagonal direction. However, we
have found that imposing compatibility conditions along the edges results in a more
rubust method which also is easier to implement. We examplify the compatibility
conditions on the edge where x = 0 and y = 0. Along the boundary x = 0, we impose
(78) (with the positive sign). The corresponding boundary conditions along y = 0 are

ut = csuy, vt = cpvy, wt = cswy, y = 0, 0 ≤ x ≤ a, 0 ≤ z ≤ c, t ≥ 0.

Equating the time derivatives along the edge gives

cpux = csuy,

csvx = cpvy, y = 0, x = 0, 0 ≤ z ≤ c, t ≥ 0,

cswx = cswy.

Similar relations can easily be derived for the other edges.

4.3. A simplified earthquake. The Pacific Earthquake Engineering Center
and the Southern California Earthquake Center have defined a set of seismic model
problems in an effort to evaluate and validate wave propagation software [8]. We have
computed solutions to several of these problems, but in order to save space we report
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Fig. 5. The computational domain and fault surface for the simplified earthquake problem
LOH.2 (upper left). The • indicates the measurement station, and the magnified plane shows the
fault surface, where the slip starts at the hypocenter indicated by concentric circles. Our results are
shown with solid lines for the vertical (top right), radial (bottom left), and transverse (bottom right)
velocity components, and the dashed lines are the results from the UCSB code; see [8].

only our results for problem LOH.2, which models a simplified earthquake with slip
on an extended fault surface; see Figure 5. The material in this model consists of a
layer over a half-space, where the layer extends from depth z = 0 to z = 1000. The
velocities and density in the layer are cp = 4000, cs = 2000, ρ = 2600. The half-space
z ≥ 1000 has the material properties cp = 6000, cs = 3464, ρ = 2700.

The slip on the extended fault is modeled by distributing point moment sources
on a regular grid with size δs (which is independent of the grid size h) over the fault
surface x = 0, 0 ≤ y ≤ 8000, 2000 ≤ z ≤ 6000. In this case, the fault slips by a
constant amount in the y-direction, which means that the Cartesian components of
the moment tensor Mr in each source term (70) equal

Mr = δ2
sμS0

⎛⎝ 0 1 0
1 0 0
0 0 0

⎞⎠ , S0 = 1.

The modeled earthquake starts at the hypocenter xH = (0, 1000, 4000), and the rup-
ture propagates along the fault surface with a uniform rupture velocity of 3000. The
propagation of the rupture is modeled by letting the source time function gr(t) depend
on the distance between the hypocenter and the location of each source

Rr = |xr − xH |.
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The time dependence of source number r is

gr(t) =

⎧⎨⎩
0, t < Rr/3000,

1 −
(

1 +
τr(t)

T

)
e−τr(t)/T , t ≥ Rr/3000,

τr(t) = t−Rr/3000,

where T = 0.1 is related to the rise time of the slip, i.e., how quickly the fault slips
at each fixed point along the fault surface.

In our calculation, the extent of the computational domain was −15000 ≤ x ≤
15000, −15000 ≤ y ≤ 15000, 0 ≤ z ≤ 17000, and nonreflecting boundary conditions
were imposed on all boundaries except at z = 0, where a free surface condition was
enforced. The grid size was h = 50, corresponding to about 1.23×108 grid points, and
1742 time steps were taken to reach time t = 9. We discretized the fault surface with
δs = 100, giving 3200 point moment sources. Results for this problem are available
from a number of finite difference and finite element codes [8]. To compare our
results, we recorded the time evolution of the velocity (i.e., the time derivative of the
displacement) at a number of stations along a line on the free surface. Since all codes
predicted similar results, we show only the comparison with the UCSB code (using
notation from [8]). This code solves the elastic wave equation as a first order system in
velocity-stress formulation using a staggered grid finite difference method. Since the
source time functions gr(t) trigger high frequency motions which are not resolvable on
the mesh, the results from both our code and the UCSB code were low-pass filtered in
time using a Gaussian with filter width σ = 0.05. In Figure 5 we compare solutions at
a station located at x = (6000, 8000, 0). Velocities are given in a cylindrical coordinate
system (radial, transverse, up) with the origin at (0, 0, 0). Note that the nonreflecting
boundary conditions affects the solution only after t ≈ 5 and that our results compare
especially well with the other code before that time. One way of determining the
accuracy of the solution after t ≈ 5 would be to repeat the simulation on a larger
domain, but the computational cost was too great to perform that experiment.

5. Conclusions. We have described a stable, second order accurate finite dif-
ference method for the elastic wave equation in second order formulation subject to a
stress-free boundary condition on a flat surface. We have proven that the method is
stable even when the coefficients are discontinuous in space, as long as μ > 0, λ > 0,
and ρ > 0 at all grid points. The stability limit on the time step has been studied in
detail, and we have shown that all values of cp/cs >

√
2 can be handled if the time

step is reduced by 9% compared to the von Neumann value. We have also described a
way to discretize point forces and moments on the mesh so that the solution becomes
second order accurate away from the singularity in the solution.

In seismic applications it is common to have water (e.g., a lake or an ocean)
in parts of the domain. Only compressional (P ) waves can travel through water,
and the acoustic wave propagation can be modeled by setting μ = 0 in the elastic
wave equation. We have generalized our scheme to handle the mixed elastic/acoustic
case, and this scheme was used as part of a simulation effort coordinated by the
U.S. Geological Survey to model ground motions during the great 1906 San Francisco
earthquake [23]. Our results showed good agreement with other codes and measured
Mercalli intensities. More details will be described in a forthcoming paper [1].

Future plans include generalizing our embedded boundary technique for the scalar
wave equation [19, 17, 16] to the elastic wave equation. In the seismic application,
embedded boundaries will allow us to include effects of topography and more accu-
rately treat internal material discontinuities. We are also exploring generalizations to
fourth order accuracy and curvilinear coordinates.
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Appendix A. Accuracy (Theorem 1). We will prove the accuracy of the
semidiscrete equations by showing that they are equivalent to another approximation
which clearly is second order accurate. In particular, we want to analyze the accuracy
of the spatial discretization (17)–(19) at the z = 0 boundary, where the free surface

boundary condition is applied. At this boundary, the operator D̃z
0 simplifies to Dz

+,
which would appear to give only a first order accurate difference formula. However,
we proceed to show that this difference formula, in combination with the discrete free
surface boundary condition, indeed results in a second order approximation.

We start by eliminating the ghost points above the free surface from the semidis-
crete system (17)–(19), subject to the boundary conditions (20)–(22). To save space,
we go through only the details for (17) subject to (20). The terms in L(u) that contain
z-differences on the z = 0 grid line are

Ti,j =: Dz
−
(
μi,j,3/2D

z
+ui,j,1

)
+ Dx

0

(
λi,j,1D

z
+wi,j,1

)
+ Dz

+ (μi,j,1D
x
0wi,j,1) .

The free surface boundary condition (20) gives

μi,j,1/2D
z
+ui,j,0 = −μi,j,3/2D

z
+ui,j,1 − 2μi,j,1D

x
0wi,j,1.

Hence,
(79)

Ti,j =
2

h

[
μi,j,3/2D

z
+ui,j,1 + μi,j,1D

x
0wi,j,1

]
+Dx

0

(
λi,j,1D

z
+wi,j,1

)
+Dz

+ (μi,j,1D
x
0wi,j,1) .

We compare the spatial discretization to a fully centered scheme where the terms
in L(u) that contain z-differences on the z = 0 grid line:

(80) T̃i,j =: Dz
−
(
μi,j,3/2D

z
+ui,j,1

)
+ Dx

0 (λi,j,1D
z
0wi,j,1) + Dz

0 (μi,j,1D
x
0wi,j,1) .

We can perturb the free surface boundary condition (20) by a second order term

(81)
1

2

(
μi,j,3/2D

z
+ui,j,1 + μi,j,1/2D

z
+ui,j,0

)
+ μi,j,1D

x
0wi,j,1 = h2Ri,j .

The resulting spatial discretization will be second order accurate as long as R is a
difference operator which is bounded independently of h for smooth functions. We
will determine R such that (80) subject to (81) is equivalent to (79). The boundary
condition (81) gives

(82) μi,j,1/2D
z
+ui,j,0 = −μi,j,3/2D

z
+ui,j,1 − 2μi,j,1D

x
0wi,j,1 + 2h2Ri,j .

Using (82), (80) can be written

T̃i,j =
2

h

[
μi,j,3/2D

z
+ui,j,1 + μi,j,1D

x
0wi,j,1

]
+ Dx

0 (λi,j,1D
z
0wi,j,1)

+Dz
0 (μi,j,1D

x
0wi,j,1) + 2hRi,j .

Hence, T = T̃ if

Dx
0

(
λi,j,1D

z
+wi,j,1

)
+ Dz

+ (μi,j,1D
x
0wi,j,1)

= Dx
0 (λi,j,1D

z
0wi,j,1) + Dz

0 (μi,j,1D
x
0wi,j,1) + 2hRi,j .
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We have

Dz
0w = Dz

+w − h

2
Dz

+D
z
−w,

which gives

Ri,j =
1

4
Dx

0 (λi,j,1D
z
+D

z
−wi,j,1) +

1

4
Dz

+D
z
−(μi,j,1D

x
0wi,j,1).

Similar calculations show that the boundary conditions (21) and (22) can be perturbed
by second order terms to account for the difference between a fully centered and a
one-sided spatial discretization in L(v) and L(w), respectively.

This proves that the semidiscrete approximation (17)–(19) subject to the bound-
ary conditions (20)–(22) is second order accurate.

Note. Inserting the expression for Ri,j into (81) shows that the fully centered
approximation couples all ghost points (k = 0) along the free surface. Hence, using
this formulation would require a linear system to be solved to obtain the ghost point
values at each time step. As we have demonstrated, the same solution can be obtained
without solving a linear system by using our one-sided formula on the boundary.

Appendix B. Self-adjointness of the spatial operator (Lemma 1). It is
straightforward to show the following summation by parts identities:

(w,Dz
−v)h = −(Dz

+w, v)h − h2

2

∑
i,j

(wi,j,2vi,j,1 + wi,j,1vi,j,0) + h2
∑
i,j

wi,j,Nzvi,j,Nz−1,

(83)

(w, D̃z
0v)h = −(D̃z

0w, v)h − h2
∑
i,j

wi,j,1vi,j,1

(84)

+
h2

2

∑
i,j

(wi,j,Nz−1vi,j,Nz + wi,j,Nzvi,j,Nz−1) ,

where
∑

i,j =
∑Nx−1

i=1

∑Ny−1
j=1 . Since the solution satisfies periodic boundary condi-

tions in the x- and y-directions, we have

(w,Dx
−v)h = −(Dx

+w, v)h, (w,Dx
0v)h = −(Dx

0w, v)h,(85)

(w,Dy
−v)h = −(Dy

+w, v)h, (w,Dy
0v)h = −(Dy

0w, v)h.(86)

Consider the three terms in the left-hand side of (26): LHS := I + II + III,

I =
(
u0, L(u)(u1, v1, w1)

)
h
, II =

(
v0, L(v)(u1, v1, w1)

)
h
,

III =
(
w0, L(w)(u1, v1, w1)

)
h
.

Applying the summation by parts identities (83)–(86) on the first term gives

(87) I = −
(
Dx

+u
0, Ex

1/2(2μ + λ)Dx
+u

1
)
h
−
(
Dy

+u
0, Ey

1/2(μ)Dy
+u

1
)
h

−
(
Dz

+u
0, Ez

1/2(μ)Dz
+u

1
)
h
−
(
Dx

0u
0, λDy

0v
1 + λD̃z

0w
1
)
h

−
(
Dy

0u
0, μDx

0v
1
)
h
−
(
D̃z

0u
0, μDx

0w
1
)
h

+ B(u),
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where the boundary terms are

B(u) = − h2

2

∑
i,j

(
u0
i,j,2μi,j,3/2D

z
+u

1
i,j,1 + u0

i,j,1μi,j,1/2D
z
+u

1
i,j,0

)
− h2

∑
i,j

u0
i,j,1μi,j,1D

x
0w

1
i,j,1 + h2

∑
i,j

u0
i,j,Nz

μi,j,Nz−1/2D
z
+u

1
i,j,Nz−1

+
h2

2

∑
i,j

(
u0
i,j,Nz−1μi,j,NzD

x
0w

1
i,j,Nz

+ u0
i,j,Nz

μi,j,Nz−1D
x
0w

1
i,j,Nz−1

)
.

The homogeneous Dirichlet boundary condition (23) gives

u0
i,j,Nz

= 0, Dx
0w

1
i,j,Nz

= 0.

Hence, the third and fourth terms in B(u) vanish. To analyze the first term, we note
that

u0
i,j,2 = u0

i,j,1 + hDz
+u

0
i,j,1.

Therefore,

(88) B(u) = −h2

2

∑
i,j

u0
i,j,1

(
μi,j,3/2D

z
+u

1
i,j,1 + μi,j,1/2D

z
+u

1
i,j,0 + 2μi,j,1D

x
0w

1
i,j,1

)
− h3

2

∑
i,j

μi,j,3/2D
z
+u

0
i,j,1D

z
+u

1
i,j,1.

The first term in (88) vanishes because of the free surface boundary condition (20),
and we arrive at

B(u) = −h3

2

∑
i,j

μi,j,3/2D
z
+u

0
i,j,1D

z
+u

1
i,j,1.

The second term in LHS can be analyzed in the same way, giving

(89) II = −
(
Dx

+v
0, Ex

1/2(μ)Dx
+v

1
)
h
−
(
Dy

+v
0, Ey

1/2(2μ + λ)Dy
+v

1
)
h

−
(
Dz

+v
0, Ez

1/2(μ)Dz
+v

1
)
h
−
(
Dx

0v
0, μDy

0u
1
)
h

−
(
Dy

0v
0, λDx

0u
1 + λD̃z

0w
1
)
h
−
(
D̃z

0v
0, μDy

0w
1
)
h

+ B(v),

where

B(v) = −h3

2

∑
i,j

μi,j,3/2D
z
+v

0
i,j,1D

z
+v

1
i,j,1.

For the third term in LHS, we get

(90) III = −
(
Dx

+w
0, Ex

1/2(μ)Dx
+w

1
)
h
−
(
Dy

+w
0, Ey

1/2(μ)Dy
+w

1
)
h

−
(
Dz

+w
0, Ez

1/2(2μ + λ)Dz
+w

1
)
h
−
(
Dx

0w
0, μD̃z

0u
1
)
h

−
(
Dy

0w
0, μD̃z

0v
1
)
h
−
(
D̃z

0w
0, λDx

0u
1 + λDy

0v
1
)
h

+ B(w),
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where

B(w) = −h3

2

∑
i,j

(2μi,j,3/2 + λi,j,3/2)D
z
+w

0
i,j,1D

z
+w

1
i,j,1.

After applying the same summation by parts rules to the right-hand side of (26),
it is straightforward to verify that the right-hand side equals the left-hand side.

Appendix C. Ellipticity of the spatial operator (Lemma 3). We will
mimic the construction of the energy in the continuous case by exploring the identity

(91) Dx
−E

x
1/2(μ)Dx

+u = Dx
0 (μDx

0u) − h2

4
Dx

+D
x
−
(
μDx

+D
x
−u

)
in the periodic x- and y-directions. The problem is not periodic in the z-direction. We
will use the following summation-by-parts form of the above identity instead (N = Nz

in this appendix)

(92)
(
u,Dz

−E
z
1/2(μ)Dz

+u
)
h

= −
(
D̃z

0u, μD̃
z
0u
)
h
− h2

4

(
Dz

+D
z
−u, μD

z
+D

z
−u

)
hr

+ h2
∑
i,j

(
−1

2
μi,j,1/2ui,j,1D

z
+ui,j,0 −

1

2
μi,j,3/2ui,j,1D

z
+ui,j,1

+
μi,j,N

2
ui,j,N−1D

z
+ui,j,N−1 +

μi,j,N−1

2
ui,j,NDz

+ui,j,N−1

)
.

We obtain, by use of (91) in the periodic directions,

L(u)(u, v, w) = 2Dx
−

(
Ex

1/2(μ)Dx
+u

)
+ Dz

−

(
Ez

1/2(μ)Dz
+u

)
+ Dx

0

(
λ(Dx

0u + Dy
0v + D̃z

0w)
)

+ Dy
0 (μ(Dy

0u + Dx
0v)) + D̃z

0 (μDx
0w)

− h2

4

(
Dx

+D
x
−(λDx

+D
x
−u) + Dy

+D
y
−(μDy

+D
y
−u)

)
,

L(v)(u, v, w) = 2Dy
−

(
Ey

1/2(μ)Dy
+v

)
+ Dz

−

(
Ez

1/2(μ)Dz
+v

)
+ Dy

0

(
λ(Dx

0u + Dy
0v + D̃z

0w)
)

+ Dx
0 (μ(Dy

0u + Dx
0v)) + D̃z

0 (μDy
0w)

− h2

4

(
Dx

+D
x
−(μDx

+D
x
−v) + Dy

+D
y
−(λDy

+D
y
−v)

)
,

L(w)(u, v, w) = 2Dz
−

(
Ez

1/2(μ)Dz
+w

)
+ Dz

−

(
Ez

1/2(λ)Dz
+w

)
+ D̃z

0 (λ(Dx
0u + Dy

0v)) + Dx
0

(
μ(D̃z

0u + Dx
0w)

)
+ Dy

0

(
μ(D̃z

0v + Dy
0w)

)
− h2

4

(
Dx

+D
x
−(μDx

+D
x
−w) + Dy

+D
y
−(μDy

+D
y
−w)

)
.

Identities (92) and (84) give

(u, L(u))h = − 2(Dx
+u,E

x
1/2(μ)Dx

+u)h − (D̃z
0u, μD̃

z
0u)h

−
(
Dx

0u, λ(Dx
0u + Dy

0v + D̃z
0w)

)
h
− (Dy

0u, μ(Dy
0u + Dx

0v))h

−
(
D̃z

0u, μD
x
0w

)
h
− h2

4

[
(Dx

+D
x
−u, λD

x
+D

x
−u)h

+ (Dy
+D

y
−u, μD

y
+D

y
−u)h + (Dz

+D
z
−u, μD

z
+D

z
−u)hr

]
+ T

(u)
1 + T

(u)
N ,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1934 S. NILSSON, N. A. PETERSSON, B. SJÖGREEN, AND H.-O. KREISS

where T
(u)
1 and T

(u)
N are the boundary terms that correspond to the boundary at

k = 1 and at k = N , respectively. The periodic directions do not contribute with any
boundary terms as seen from (85) and (86). We have

T
(u)
1 = h2

∑
i,j

(
−1

2
μi,j,1/2ui,j,1D

z
+ui,j,0 −

1

2
μi,j,3/2ui,j,1D

z
+ui,j,1 − ui,j,1μi,j,1D

x
0wi,j,1

)
= h2

∑
i,j

ui,j,1

(
−1

2
μi,j,1/2D

z
+ui,j,0 −

1

2
μi,j,3/2D

z
+ui,j,1 − μi,j,1D

x
0wi,j,1

)
.

It follows directly from the free surface boundary condition (20) that T
(u)
1 = 0. The

boundary terms at k = N are given by

T
(u)
N = h2

∑
i,j

(μi,j,N−1

2
ui,j,NDx

0wi,j,N−1 +
μi,j,Nui,j,N−1

2
Dx

0wi,j,N

+
μi,j,N

2
ui,j,N−1D

z
−ui,j,N +

μi,j,N−1

2
ui,j,NDz

−ui,j,N

)
.

The Dirichlet boundary condition at k = N gives

T
(u)
N = −h

∑
i,j

μi,j,N

2
u2
i,j,N−1.

Similarly, we obtain

(v, L(v))h = − 2(Dy
+v,E

y
1/2(μ)Dy

+v)h − (D̃z
0v, μD̃

z
0v)h

−
(
Dy

0v, λ(Dx
0u + Dy

0v + D̃z
0w)

)
h
− (Dx

0v, μ(Dy
0u + Dx

0w))h

−
(
D̃z

0v, μD
y
0w

)
h
− h2

4

[
(Dx

+D
x
−v, μD

x
+D

x
−v)h

+ (Dy
+D

y
−v, λD

y
+D

y
−v)h + (Dz

+D
z
−v, μD

z
+D

z
−v)hr

]
− h

∑
i,j

μi,j,N

2
v2
i,j,N−1.

In the z-direction, we make use of (84) and (92) as well as(
w,Dz

+

(
Ez

1/2(μ)Dz
−w

))
h

= −
(
Dz

+w,E
z
1/2(μ)Dz

+w
)
h

+ h2
∑
i,j

−1

2
μi,j,1/2wi,j,1D

z
+wi,j,0 −

1

2
μi,j,3/2wi,j,1D

z
+wi,j,1 −

h

2
μi,j,3/2(D

z
+wi,j,1)

2

+ μi,j,N−1/2wi,j,NDz
+wi,j,N−1.

We have

(w,L(w))h = −2(Dz
+w,E

z
1/2(μ)Dz

+w)h − (D̃z
0w, λD̃

z
0w)h − (D̃z

0w, λ(Dx
0u + Dy

0v))h

− (Dx
0w, μ(Dx

0w + D̃z
0u))h − (Dy

0w, μ(Dy
0w + D̃z

0v))h

− h2

4

[
(Dx

+D
x
−w, μD

x
+D

x
−w)h + (Dy

+D
y
−w, μD

y
+D

y
−w)h + (Dz

+D
z
−w, λD

z
+D

z
−w)hr

]
+ T

(w)
1 + T

(w)
N ,
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where T
(w)
1 are the boundary terms that belong to the free surface boundary, and

T
(w)
N are the boundary terms that belong to the Dirichlet boundary. We have

T
(w)
1 = h2

∑
i,j

−1

2
λi,j,1/2wi,j,1D

z
+wi,j,0 −

1

2
λi,j,3/2wi,j,1D

z
+wi,j,1

− wi,j,1λi,j,1(D
x
0ui,j,1 + Dy

0vi,j,1) − μi,j,1/2wi,j,1D
z
+wi,j,0

− μi,j,3/2wi,j,1D
z
+wi,j,1 − hμi,j,3/2(D

z
+wi,j,1)

2

= h2
∑
i,j

wi,j,1

(
−1

2
λi,j,1/2D

z
+wi,j,0 −

1

2
λi,j,3/2D

z
+wi,j,1

− λi,j,1(D
x
0ui,j,1 + Dy

0vi,j,1) − μi,j,1/2D
z
+wi,j,0

− μi,j,3/2D
z
+wi,j,1

)
− hμi,j,3/2(D

z
+wi,j,1)

2.

The free surface boundary condition (22) gives

T
(w)
1 = −h3

∑
i,j

μi,j,3/2(D
z
+wi,j,1)

2.

At the Dirichlet boundary we have

T
(w)
N = h2

∑
i,j

2μi,j,N−1/2wi,j,NDz
+wi,j,N−1 +

1

2
wi,j,N−1λi,j,N (Dx

0ui,j,N + Dy
0vi,j,N )

+
1

2
wi,j,Nλi,j,N−1(D

x
0ui,j,N−1 + Dy

0vi,j,N−1) +
λi,j,N

2
wi,j,N−1D

z
+wi,j,N−1

+
λi,j,N−1

2
wi,j,NDz

+wi,j,N−1 = −h
∑
i,j

λi,j,N

2
w2

i,j,N−1.

Adding the expressions for (u, L(u)), (v, L(v)), and (w,L(w)) results in (28)–(30).
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